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Abstract

A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-in-cell model for simulating plasma and
laser wakefield acceleration is described. The model is based on the quasi-static or frozen field approximation, which
reduces a fully three-dimensional electromagnetic field solve and particle push to a two-dimensional field solve and particle
push. This is done by calculating the plasma wake assuming that the drive beam and/or laser does not evolve during the
time it takes for it to pass a plasma particle. The complete electromagnetic fields of the plasma wake and its associated
index of refraction are then used to evolve the drive beam and/or laser using very large time steps. This algorithm reduces
the computational time by 2–3 orders of magnitude. Comparison between the new algorithm and conventional fully expli-
cit models (OSIRIS) is presented. The agreement is excellent for problems of interest. Direction for future work is also
presented.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

The subject of intense laser and beam plasma interactions is rich in nonlinear, relativistic, and ultra-fast
physics and is part of the rapidly emerging field of high-energy density science. Interestingly, the focused inten-
sities (or energy densities) of the state-of-the-art particle beams and laser pulses are both on the order of
1021 W/cm2. At these intensities the self-fields of the beam and the fields of the laser are large enough to
rapidly accelerate plasma electrons to relativistic energies and are high enough to tunnel ionize gas atoms.
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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Understanding the interplay among the nonlinear physical processes in these contexts is greatly aided by
extensive numerical simulations.

One area in which numerical simulation has played a crucial role is that of plasma-based accelerators.
There are four basic concepts being studied in plasma-based acceleration. These are the Laser Wakefield
Accelerator (LWFA) [1,2], the Self-Modulated Laser Wakefield Accelerator (SMLWFA) [1,3], the Plasma
Beat Wave Accelerator (PBWA) [1,4], and the Plasma Wakefield Accelerator (PWFA) [1,5]. These ideas
are summarized pictorially in Fig. 1. In each of these schemes a driver, either a laser (LWFA, SMLWFA,
PBWA) or a particle beam (PWFA), traverses a plasma creating a plasma wave wake. The phase velocity
of the wake is roughly equal to the velocity of the driver in complete analogy with the water wave wake left
behind a motor boat in a lake. The plasma wave wake has a longitudinal electric field so it can efficiently accel-
erate a trailing bunch of charged particles. Since the drivers are usually moving at nearly the speed of light (if
one wanted to accelerate protons for example then the driver might have a lower phase velocity) then the
phase velocity of the wake moves nearly at the speed of light, making it ideal to accelerate particles to rela-
tivistic energies. Plasma-based accelerators are of interest because the accelerating fields in the plasma wave
structures can in principle be many orders of magnitude above current RF technology. Acceleration gradients
in excess of 100 GeV/m have already been demonstrated.

In the past two years there has been tremendous progress in the field of plasma based accelerators. At the
recent advanced accelerator concepts workshop [6], Joshi reported that 3 GeV energy gain over only �10 cm
has been observed in PWFA experiments at SLAC. In a recent issue in Nature, three independent groups
reported that they observed mono-energetic, self-injected, beams of electrons with central energies
�100 MeV in LWFA experiments [7–9]. However, there are still many critical issues needed to be addressed
before this work can be extended to 50 GeV or even to 1 TeV acceleration stages.

To model the full scale of a plasma-based accelerator, one needs a code (or codes) that can model the evo-
lution of the driver, the generation and evolution of the wake, and the acceleration of the trailing bunch of
particles. It turns out, perhaps not surprisingly, that in most cases to do this properly one needs particle based
models. That is, one needs to follow the trajectories of particles in their self-consistent fields. The reasons for
this are that in many cases the wake excitation process is highly nonlinear and results in nonlaminar particle
trajectories, and that any reasonable beam loading scenario will require very tight spot sizes. These situations
cannot be modeled using fluid descriptions.

The most straightforward particle based model is the fully explicit PIC algorithm [10]. In this algorithm,
particles are loaded onto a spatially gridded simulation domain. The charge and current densities at the grid
points can then be calculated by assigning the charge and current of nearby particles to the grid. These charge
and current densities are used to advance the fields (also defined on the grid) via Maxwell’s equations
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Fig. 1. Schematics of the four basic plasma-based accelerator schemes.
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The updated fields are used to advance the particles to new positions and velocities via the relativistic equation
of motion
dP

dt
¼ q Eþ V� B

c

� �
.

Although simple in concept, there are many subtle issues with solving these equations on a computer including
the way in which charge and current are deposited on the grid and the way in which the equations of motion
are integrated.

An incredible amount of progress has been made during the past 20 years using the full PIC algorithm [11].
However, because the algorithm makes few physics approximations it is also very CPU intensive. Using a full
PIC code it takes �1013 particle pushes to model a single GeV PWFA stage (and �1014 to model a GeV
LWFA stage). On today’s fastest computers, such a simulation takes �10,000 (100,000 for LWFA) CPU
hours. Clearly, it is not possible to model 50 GeV or greater stages using the full PIC method. Furthermore,
the use of the full PIC method is limited by the fact that the dispersion relation for an electromagnetic wave in
a full PIC code is not ideal and therefore spurious Cerenkov radiations could develop in a simulation for a
high c beam moving almost at the speed of light.

Luckily, the physics of plasma-based acceleration allows one to make approximations that can in principle
reduce the computational needs significantly and that are extremely accurate. In a plasma accelerator stage a
short drive beam (either a laser pulse or particle beam) propagates through long regions of plasma and a trail-
ing beam of electrons or positrons gets accelerated by the resulting wake. The driver and trailing beam evolve
on a very different length scale than the plasma wake wavelength or the driver length. In a fully explicit code,
one needs to choose a cell size that resolves the shortest length scale (either the laser wavelength or the plasma
wavelength) and the time step is constrained by the Courant condition. For typical plasma accelerator param-
eters, the drive beam might not evolve for over 1000’s of time steps. For example, for a PWFA the drive beam
evolves on the scale of the betatron wavelength which is (2c)1/2 times longer than the plasma wavelength. For a
50 GeV beam this is a factor of �500 times longer. For a LWFA the driver evolves on the Rayleigh length
which is also orders of magnitude longer than the wavelength of the wake (for LWFA the shortest spatial scale
is the laser wavelength so the potential CPU savings of reduced models over the fully explicit method can be
considerably higher).

The quasi-static or frozen field approximation takes advantage of this disparity of scales and separates out
the evolution of the driver from the plasma wake generation. Essentially, this approximation makes use of the
fact that individual plasma electrons are passed over by the driver and its wake in a short time compared with
the time over which the shape of the driver and wake evolve. Developing plasma based accelerator PIC codes
using the quasi-static approximation was done independently by Mora and Antonsen [12] for laser drivers and
by Whittum [13] for particle beam drivers. Mora and Antonsen’s code, called WAKE, was confined to two
dimensions and did not include the ability to model wake excitation from particle beams or to model beam
loading. Whittum’s code did not include the evolution of a laser field and made approximations to the wake
field equations that are only appropriate to narrow driver beam bunches with moderate amounts of charge.
Very recently, Lotov [14] reported on a 2D quasi-static code which is essentially identical to WAKE but for
modeling PWFA.

In this paper, we describe in detail a new code, called QuickPIC, which makes the quasi-static approxima-
tion, but is fully three dimensional (in a sense that is to be defined later), is fully parallelized, puts no restric-
tions on the amount of beam charge, and can model both LWFA, PWFA and beam loading. We will also
show that QuickPIC can completely reproduce the results from a full PIC code such as OSIRIS [15] with
at least a savings of 100 in CPU time. (Furthermore, the quasi-static approximation does not suffer from
unphysical Cerenkov radiation [10] that occurs in full PIC codes.) The development of QuickPIC is not a
straightforward extension of the 2D algorithms of Mora and Antonsen and of Lotov or the approximate
3D model of Whittum. Complexities arise when the full quasi-static equations are parallelized and extended
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to 3D. These include the need for an iterative solver with two transverse dimensions and the parallel routines
for two types of distinct data structures, i.e., the driver (3D) and plasma particles (2D). The details of these
issues and the solutions are presented in the following sections.

This paper is outlined as follows. In Section 2 we describe the quasi-static model. In particular, we describe
the basic equations formulated using the Lorentz gauge. In Section 3, we describe how the algorithm was
numerically implemented concentrating on a particle beam driver. In Section 4, we describe the numerical
method used to advance the laser and to couple the laser to the plasma. In Section 5, the construction of
the code is described including the details of the parallelization. In Section 6, we discuss the savings in com-
puter needs as well as provide comparisons between QuickPIC and full PIC (OSIRIS) results for both PWFA
and LWFA. In Section 7, we indicate where future improvements can be made and provide ideas for future
applications of the code. Last, we summarize the advantages and limitations of QuickPIC and conclude in
Section 8.

2. Quasi-static PIC equations in the Lorentz gauge

In this section, we describe the physical model that forms the basis of QuickPIC and the quasi-static
approximation that QuickPIC employs. We begin by describing the model equations without a laser driver,
then we will add the laser driver to the model. The implementation chosen for QuickPIC starts from the Max-
well equations in the Lorentz gauge (the code WAKE uses the transverse Coulomb gauge),
1
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ot2
�r2

� �
/ðx; y; z; tÞ ¼ 4pqðx; y; z; tÞ; ð1Þ
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� �
Aðx; y; z; tÞ ¼ 4p

c
Jðx; y; z; tÞ; ð2Þ
where q and J are the charge and current densities. Next we make a mathematical transform of the coordi-
nates from (x,y,z, t) to (x,y, s,n), where s = z (z is the direction in which the beam is moving), n = ct � z. Then
oz = os � on and cot = on. Part of the quasi-static approximation amounts to assuming os� on in Eqs. (1) and
(2), therefore oz � �on and cot = on. Under these assumptions, the full set of quasi-static equations derived
from Eqs. (1) and (2) for the wake fields can be written as
�r2
?/ðx; y; s; nÞ ¼ 4pqðx; y; s; nÞ; ð3Þ
and
�r2
?Aðx; y; s; nÞ ¼ 4pJðx; y; s; nÞ=c. ð4Þ
Also, within the quasi-static approximation the Lorentz gauge condition can be written as
r? � A?ðx; y; s; nÞ ¼ �
owðx; y; s; nÞ

on
; ð5Þ
where w = / � Az and Az is the longitudinal component of vector potential.
Physically, the quasi-static assumption means that the driver does not change shape during the time it takes

for it to pass by a plasma particle. While the variables n and s both have units of length, they correspond to
fast and slow time scales. The variable n corresponds to the fast time scale associated with the duration of the
driver and the time scale of the plasma wake that develops in response to the driver. The variable s measures
the time scale over which the shape of the driver evolves. This is illustrated in Fig. 2. Eqs. (1) and (2) describe
the excitation of both the wake fields and in the case of a laser pulse driver the laser pulse fields as well. The
wake fields and laser fields require separate treatment, due to their different time dependences. The laser fields
vary rapidly in time as it is assumed that the laser frequency is much greater than the plasma frequency. We
will discuss the laser field after the discussion of the wake fields.

Separate equations of motion are written for particles traveling at the speed of the driver, which we refer to
as beam particles, and for plasma particles, which are quickly passed over by the driver and wake. For beam
particles which are moving at nearly the speed of light, Vbz @ c, the variable s can be used to integrate the equa-
tions of motion and the resulting evolution equations for momentum become



Fig. 2. The two variable s and n for the different time scales for drive beam and plasma evolution.
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dPb?

ds
¼ � qb

c
r?w; ð6aÞ
and
dPbz

ds
¼ qb

c
ow
on
; ð6bÞ
where the subscript b denotes beam particles and qb is the charge of a beam particle and Pb is its momentum.
In (6a) and (6b), the right-hand sides are derived assuming that beam particles are moving at nearly the speed
of light, Vbz @ c and hence jVbzj � jVb^j. The spatial trajectories of beam particles are given by
dxb?

ds
¼ Pb?

cmec
; ð7aÞ

dnb

ds
¼ 1� Pbz

cmec
. ð7bÞ
Beam charge and current density is then assigned to the three-dimensional grid in (x,y,n) in the same way as in
a conventional PIC code.

For the plasma particles, for which s changes little, the evolution of the transverse momentum is followed in
n rather than in s [12],
dPp?

dn
¼

qp

c� V pz
E? þ

Vp

c
� B

� �
?

� �
. ð8Þ
Note that the right-hand side of Eq. (8) depends on s but that we will neglect this dependence. The transverse
position is given by
dxp?

dn
¼ Vp?=c

1� V pz=c
; ð9Þ
where dn = (1 � Vpz/c) dt and the subscript p denotes plasma particles and Vp^ = Pp^/(cpme), where
cp ¼ 1þ
P 2

p

ðmecÞ2

" #1=2
is the relativistic factor for a plasma particle. Note that Eq. (8) only gives the components of momentum trans-
verse to the moving direction of the driver. The axial momentum of plasma particles can be obtained via the
constant of the motion [12],
cp � P pz=mec ¼ 1� qpw=mec2; ð10Þ
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giving
P pz=ðmecÞ ¼
1þ P 2

p?=ðmecÞ2 � ½1� qpw=ðmec2Þ	2

2½1� qpw=ðmec2Þ	 . ð11Þ
In principle, the plasma particle equations should also be augmented by a variable that measures the time of
flight of a plasma particle as it is overtaken by the driver and wake,
dsp

dn
¼ 1

1� V pz=c
; ð12Þ
where sp is the longitudinal position of the particular plasma particle.
This relation is used in computing charge and current densities; however, as it is assumed that the driver

and wake depend weakly on this variable, this equation is not integrated.
As the driver sweeps over the plasma, plasma particles continuously follow the trajectories determined by

Eqs. (8) and (9). Thus, to calculate the plasma contribution to the local charge and current density it is nec-
essary to account for the amount of time a particle will spend in an interval of n. This time Dt is proportional
to the factor dsp/dn just calculated above. The plasma particle charge and current density can then be accu-
mulated on a grid by using the following deposition schemes for charge density and current,
qp ¼
1

Volume

X
i

qpi

1� V pzi=c
; ð13Þ
and
Jp ¼
1

Volume

X
i

qpiVpi

1� V pzi=c
. ð14Þ
Here the sum is over particles contributing to the charge and current densities at a given grid point. This sum
must include weighting factors to distribute the particle charge to neighboring grid points.

The fact that a given simulation particle does not represent a fixed amount of charge can be viewed another
way. The continuity equation for a collection of discrete particles each with charge Qi is
0 ¼ o

ot

X
i

Qidðx� xiðtÞÞ þ r �
X

i

QiV iðtÞdðx� xiðtÞÞ
" #

.

Under the quasi-static approximation where os� on and sp(n) is the same for each particle, this reduces to
0 ¼ o

on

X
i

Qi 1� V ziðnÞ
c

� �
dðx? � x?iðnÞÞ þ r? �

X
i

Qi

V ?iðnÞ
c

dðx? � x?iðnÞÞ
" #

.

Therefore, at any value of n we can integrate along x and y to obtain
0 ¼ d

dn

X
i

Qi½1� V ziðnÞ=c	.
So, when advancing plasma electrons forward in n, the quantity Qið1� V zi
c Þ 
 qi (not Qi) of each particle is

constant. From which it follows that the charge on each particle is Qi 

qi

1�V zi=c, where qi is a constant.
The above set of equations does not describe the evolution of laser pulse or its effect on particle motion. To

include a laser pulse, the following modifications need to be made. First, an additional vector potential that
generates the electric and magnetic fields of the laser pulse is added to Eq. (2). The laser pulse is described in
terms of an envelope and a rapidly varying phase,
eA

mec2
¼ Re âðx; y; n; sÞ expð�ik0nÞ½ 	; ð15Þ
where k0 = x0/c is the central wave number of the laser pulse corresponding to a frequency x0 and the hat
denotes a normalized quantity. The envelope satisfies an augmented paraxial wave equation that is derived
from Eq. (2)
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?â ¼ 4pe
mec3

bJ ¼ k2
0vpâ. ð16Þ
The mixed derivative term is needed to describe group velocity reduction due to the plasma, the direct forward
Raman scattering and self-modulational instabilities [16]. The high frequency current is expressed in terms of a
product of a susceptibility vp and the laser vector potential. The relative dielectric constant is thus, e = 1 + vp.
The plasma contribution to the susceptibility is calculated using the following deposition scheme,
vp ¼ �
x2

p

x2
0cp

* +
¼ � 4pe

mex2
0

1

Volume

X qp

�cpð1� V pz=cÞ . ð17Þ
As shown by Mora and Antonsen [12] the laser period-averaged relativistic gamma factor is modified when the
laser’s vector potential is included,
�cp ¼ ½1þ P 2
p=ðmecÞ2 þ jâj2=2	1=2.
The plasma particles are now influenced by the ponderomotive force of the laser, which is included in the
equation of motion as
dPp?

dn
¼

qp

c� V pz
E? þ

Vp

c
� B

� �
?
� mec2

�cp

r?
jâj2

4

" #
. ð18Þ
We can now summarize the quasi-static approximation as follows. Physically, it is based on the fact that for
short particle or laser beams the driver does not evolve (it is static) during the time it takes for it to pass by a
plasma particle. Mathematically, we make this approximation by transforming from the variables from
(x,y,z, t) to (x,y, s ” z,n ” ct � z). In the field equations we assume os� on which leads to 1

c2
o2

ot2 � o2

oz2 ffi o2

on2. This
is reasonable so long as kb� xp/c, i.e.,

ffiffiffiffiffiffiffi
2cb

p
� 1. For parameters of interest, cb > 2000, this is trivially sat-

isfied. We also assume that for each plasma particle sp(n) is the same. Therefore, we do not integrate Eq. (12)
and on the right-hand side of Eq. (8) we assume that each plasma particle at a value of (x,y,n) feels the same
fields. This can be quantified as o

osF? �
R

dn
1�V pz=c� F?.

This is reasonable so long as a particle is not trapped in the wake, i.e., Vpz does not approach
V b ffi cð1� 1

2c2
b

Þ or V g ffi cð1� x2
p

2x2
0

Þ for much of a particle’s trajectory. Stated another way, the axial displace-
ment of a particle should be much less than the bunch length during the transit time through the pulse. When
including a laser driver, we also make the ponderomotive guiding center approximation in which we evolve the
laser using the envelope approximation and we assume the forces of the plasma electrons are due to the time
averaged ponderomotive force. As described in Appendix A in Ref. [12], the derivation of the constant of
motion requires that 1 � Vpz/c� xp/x0. This condition comes from the requirement that a particle should
not move much in the radial direction during the time it takes for one wavelength of the laser to pass by
it. Since a single particle in vacuum is pushed forward with a velocity

V pz

c ¼
â2=2

ð1þâ2=2Þ, this condition can be esti-
mated as jâj �

ffiffiffiffiffiffiffiffi
2 x0

xp

q
for large jâj.

However, developing an efficient code based on the above equations and approximations is not straightfor-
ward. While the system described is fully three dimensional, only the two transverse coordinates are truly
space-like. The coordinates s and n can be thought of alternately as being time-like or space-like depending
on the equation in which they appear. For example, if one considers the plasma particle equations of motion
(Eqs. (8), (9) and (18)) and their associated wake fields (Eqs. (3) and (4)), n is a time-like variable and s is a
parameter. The field equations (Eqs. (3) and (4)) are local in n; that is they can be solved in 2D space (x,y) for
each value of n. The resulting system has the character of a 2D electrostatic model (albeit with both electro-
static and magnetostatic like interactions) with n playing the role of time. The difficulty is that both the field
equation (Eq. (4)) and the equation of motion (Eq. (8)) imply a relation between J^ and A^ that must be sat-
isfied for each n. For the field equation (Eq. (4)) the relation is clearly apparent, while for the particle equa-
tions one needs to consider that a portion of E^ is proportional to oA^/on. If one were to sum over particles in
a box, the equation of motion would relate oJ^/on to oA^/on. Thus, these two equations must be solved self-
consistently. In the numerical implementation this is done by iteration. This situation does not arise in normal
PIC codes where the particle equations and field equations can be advanced sequentially because they are time
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centered. The problem can be traced to the cancellation of time and space derivatives in the field equations
that occur in the drive beam frame, which makes the electromagnetic interaction local in n. This problem also
does not occur in the equations of Whittum [13] in which among other things A^ is ignored. However, as the
benchmarks to be presented in Section 6 will show, the assumptions of Whittum (neglect of J^ as well as Jz

and Vz and relativistic mass effects) are not valid for parameters of interest. For the beam particles, n plays the
role of a space-like variable and s plays the role of time. The beam electrons are loaded into a 3D grid in the
coordinates (x,y,n) and are updated in time every time step Ds.

3. Implementation of particle and wake equations

In this section, we describe how the full set of quasi-static equations (Eqs. (3)–(14)) are solved numerically.
For simplicity, we begin by assuming there is only a particle beam driver and leave a discussion of how to
include the laser’s ponderomotive force until the end.

We use the particle-in-cell (PIC) technique [10]. At a given value of s the beam particles are distributed
throughout a three-dimensional (x,y,n) grid. The charge and current densities of the beam are deposited using
standard area weighting (or higher order spline) methods. At each value of s, we then initialize a collection of
plasma particles at an initial value of n sufficiently ahead of the driver. The x and y coordinates of each plasma
particle are advanced forward in n (backward through the beam) using Eqs. (8) and (9) with electric and mag-
netic fields arising from the charges and currents from both the plasma and the beam. The key assumption is
that the variable sp is assumed to be the same for every plasma particle during the advance in n, i.e., we do not
integrate sp in n.

At a given n the fields are calculated using Eqs. (3)–(5) where q and J from the plasma are calculated using
Eqs. (13) and (14) and area weighting (or higher order splines) methods, and where q and J from the beam
have already been calculated (we do not use the transverse current J^ from the beam since it is small compared
with the longitudinal beam current and it is not needed to satisfy the continuity equation under the quasi-static
approximation). The value of Vz for each plasma particle is determined from Eqs. (10) and (11). Once the tra-
jectories of the particles (x(n),y(n)) have been advanced forward in n a desired amount such that beam has
passed them, then the beam particles are advanced in s. This cycle can be repeated a desired number of ‘‘time’’
steps in s. This flow is illustrated in Fig. 3. The structure of the algorithm therefore is that of a two-dimen-
sional (x,y) PIC code with the n being a time-like variable, embedded in a three-dimensional (x,y,n) PIC code,
with s being the time-like variable.
Fig. 3. Flow chart of the QuickPIC quasi-static algorithm showing a 2D routine embedded in a 3D routine.
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We now describe the details of the numerics in the two-dimensional part. At a point in the two-dimensional
loop where the electric and magnetic fields are known, plasma particles are updated with the Lorentz force.
Although the equations of motion are fully relativistic, they can be cast into the form of a non-relativistic
Boris pusher [17] with a modified electric field and an effective charge qeff to simplify calculation.
dup?

dn
¼ qeff

me

cpE? þ
up

c
� B

� �
?

� �
ð19Þ
and
dxp?

dn
¼ up?

1� qpw=mec2
; ð20Þ
where the definition of the effective charge is
qeff 

qp

1� qpw=mec2
.

In deriving Eqs. (19) and (20), Eq. (10) is used to express the relativistic factor and we use the proper velocity
u = cV. Once the positions and velocities are updated, the charge and current densities can be deposited,
qp ¼
1

Volume

X
i

qpi

1� V pzi=c
¼ 1

Volume

X
i

cpiqeff ; ð21Þ

Jp ¼
1

Volume

X
i

qpi

1� V pzi=c
Vpi ¼

1

Volume

X
i

qeffupi; ð22Þ
where
cpi ¼
1þ u2

pi?=c2 þ ð1� qpiw=mec2Þ2

2ð1� qpiw=mec2Þ ; ð23Þ

upiz ¼
1þ u2

pi?=c2 � ð1� qpiw=mec2Þ2

2ð1� qpiw=mec2Þ . ð24Þ
The equation of motion (Eq. (19)) requires the evaluation of the wake electric and magnetic fields. These are
given in terms of the scalar and vector potentials. The axial vector potential is determined by taking the dif-
ference between u and w,
Az ¼ u� w. ð25Þ

The electric field and magnetic field can then be found using the following equations:
E? ¼ �r?u� A?n; ð26Þ

Ez ¼
o

on
w; ð27Þ

B? ¼ ðA?n þr?AzÞ � ẑ; ð28Þ
Bz ¼ ½r? � ðA? � ẑÞ	̂z; ð29Þ
where we define A^n as
A?n 

oA?

on
.

The quantity A^n satisfies a 2D Poisson equation with a source term J?n 
 oJ?
on ,
�r2
?A?n ¼ 4pJ?n=c. ð30Þ
As described in the previous section, this system contains two equations, Eqs. (19) and (30), relating A^n and
J^n that need to be solved consistently. Furthermore, this set of equations is not time centered. For both of
these reasons, a predictor–corrector is required when these equations are discretized in n and the predictor–
corrector needs to be iterated for accuracy.
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For the discrete version of Eqs. (19)–(30), quantities are either known at half or full integer grid values of n,
i.e., n ¼ ðmþ 1

2
ÞDn or n = mDn, where m is an integer labeling the grid values. We chose that at an integer grid

value the particle proper velocities are known. Then it is natural to presume that the particle positions will be
known on half integer grid values. To second order in Dn the particle positions can be computed for the
(m + 1/2) step by using Eq. (20) for a half time step Dn/2. However, the only fields that can be computed
straightforwardly are A^ and hence $^ Æ A^ at index m by using Eqs. (3) and (4), and w which can be computed
at the (m + 1) step by using the gauge condition (Eq. (5)).

Therefore, the need for some type of iteration method is clear. In order to compute the new proper velocity
at (m + 1) the fields at the (m + 1/2) step are needed; but in order to compute the fields at the (m + 1/2) step
the currents and charge density at (m + 1/2) and hence the proper velocity at (m + 1/2) are needed.

The iteration starts by predicting J
mþ1=2
? , J

mþ1=2
?n and qm+1/2, it continues by using these predictions to com-

pute all of the fields at (m + 1/2), which are then used to advance the particles, and then the proper velocity at
index (m + 1) is used to correct the prediction for J

mþ1=2
? , J

mþ1=2
?n and qm+1/2. This is summarized in Table 1 and

the details are given next.
We assume that the derivative of a quantity in n is zero if no information about the derivative is known. The

predictions for J
mþ1=2
? , J

mþ1=2
?n are therefore,
Table
Quant

Presum
Quant
Predic
Quant
J
mþ1=2
?;l¼0 ¼ Jm

? þ ðDn=2Þ � Jm�1=2
?n ; ð31Þ

J
mþ1=2
?n;l¼0 ¼ J

mþ1=2
?n ; ð32Þ
where l is an iteration index.
The prediction of qm+1/2 is done as follows:
qmþ1=2 ¼ qmþ1=2
b þ qmþ1=2

p � qm
b þ qmþ1

b

	 

=2þ 1

Volume

X
i

cmþ1=2
pi � qpi

1� qpi � wmþ1=2=mec2
. ð33Þ
Note that for each value of s the beam quantities are known at all integer values of m so that to compute qb at
a half integer index we take the average. In Eq. (33), only cm+1/2 is unknown and needs to be predicted. The
prediction is done using Eq. (23) and the previous value of up^,
cmþ1=2
pi;l¼0 ¼

1þ ðum
p?=cÞ2 þ ð1� qpiw

mþ1=2=mec2Þ2

2ð1� qpiw
mþ1=2=mec2Þ

. ð34Þ
The other field-related quantities such as /, Az, A^, A^n, $^ Æ A^, B^, Bz, E^ can now be solved using Eqs.
(3) and (25)–(30) at index (m + 1/2) and wm+1 can also be obtained through the gauge condition, Eq. (5).
Using the predicted forces, we advance the particles’ proper velocities and positions to their next time index,
with xp^ at (m + 3/2), and up^ and J^ at (m + 1). The results umþ1

p? and Jmþ1
? are then used to make a correction

to the previous prediction,
J
mþ1=2
?n;l ¼ ðJmþ1

?;l�1 � Jm
?Þ=Dn; ð35Þ

J
mþ1=2
?;l ¼ Jm

? þ Jmþ1
?;l�1

� �
=2; ð36Þ

cmþ1=2
pi;l ¼

1þ ðum
pi? þ umþ1

pi?;l�1Þ=2c
h i2

þ ð1� qpiw
mþ1=2=mec2Þ2

2ð1� qpiw
mþ1=2=mec2Þ

. ð37Þ
1
ities and their roles in the 2D cycle and the corresponding 2D time step at which they are defined

m � 1/2 m m + 1/2 m + 1 m + 3/2

ed quantities w, J^n up^, J^ xp^
ities calculated before iteration A^, $^ Æ A^ w
ted quantities J^, J^n, c, q
ities known after iteration u, Ak, A^, A^n, $^ Æ A^, B^, Bz, E^ w; upk, up^, J^ xp^
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The predictor–corrector loop can be repeated an arbitrary number of times. One way to terminate the loop
is to wait until a desired accuracy is reached. However, the algorithm presented above suffers from one kind of
numerical instability similar to one that occurs in Darwin codes [18,19]. The low k^ modes of A^n are the most
unstable, they grow rapidly and soon dominate the whole electric and magnetic fields in a few iterations. The
problem actually exists in the field solver. If one views the iteration number as a pseudo-time variable, the
numerical instability arises from the instantaneous nature of the solution to the elliptical field equation in
the pseudo-time. To remedy this, several methods including the moment method [18,20,21] and the canonical
momentum method [18,22] have been proposed in the literature. However, incorporating these methods into
QuickPIC would involve significant modifications and they are sometimes impractical. Instead, in QuickPIC
we modified the Poisson solver in the iteration loop so that they resemble diffusion equations. Eqs. (30) and (3)
are modified as follows, respectively:
D�1
J

o

oT
A?n ¼ r2

?A?n þ 4pJ?n=c; ð38Þ

D�1
q

o/
oT
¼ r2

?/þ 4pq; ð39Þ
where D�1
J and D�1

q are reciprocals of the diffusion coefficients. We define the pseudo-time as T = lDT, then the
above equations can be rewritten in the discrete variable l,
ð1� DJr2
?ÞA?n;l ¼ A?n;l�1 þ DJ J?n;l; ð40Þ

ð1� Dqr2
?Þ/l ¼ /l�1 þ Dqql. ð41Þ
In the above equations, DT is absorbed into DJ and Dq so there is no need to consider it anymore. A diffusion
equation is parabolic, thus any local error in the source term J^n or q cannot propagate across the simulation
box instantly in one iteration. Local errors are indeed damped over the pseudo-time and the calculation can
converge to the correct solution in a few iterations if DJ and Dq are chosen appropriately. For diffusion equa-
tions like Eqs. (40) and (41), the characteristic diffusion length is LD ¼

ffiffiffiffiffiffiffiffi
4Dl
p

where we have chosen
DJ = Dq = D for simplicity. Because normally a particle will not move more than one transverse grid size
Dx during one real time step Dn, the scale length of the changes in J^n and q during this time will be on
the order of Dx. Thus, we should allow diffusion over this distance to happen in the whole iteration process,
i.e., LD;max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dlmax

p
¼ Dx, which gives an estimate for the choice of D, which is D = (Dx)2/4lmax. While it is

true that a predictor–corrector is essentially second order accurate the coefficient in front of the error can be
reduced by using more iterations, i.e., increasing lmax. For problems of interest, a full PIC code can also be
used to obtain the ‘‘correct’’ answer for the same cell size. Through experimentation, it is then possible to
determine how many iterations are needed to obtain the desired accuracy for a fixed longitudinal cell size
(effective time step). Alternatively, the accuracy could be improved by using a smaller Dn (time step). On
the other hand, since numerous calculations are involved in an iteration loop, it is desirable to have as few
iterations as possible. In practice, we found that lmax = 2 and D = (Dx)2 gives the most rapid convergence
and the best accuracy over a wide range of parameters. These choices are used for the QuickPIC runs that
are presented in Section 6 (except that 4 iterations are used in the laser driver benchmark). An area for future
work is examining the trade-offs in accuracy, speed, and memory between reducing Dn and using fewer iter-
ations vs. increasing Dn and using more iterations.

In the present implementation of QuickPIC, all transverse spatial derivatives are done in Fourier space
using fully parallelized FFTs. In principle we could use k dependent diffusion coefficients but we have not
investigated this in detail. Eqs. (38) and (39) are integrated implicitly, in the future it might be worth trying
a Crank–Nicholson approach.

As n is incremented from the front to the end of the moving window, the plasma response and all the fields
are solved for and stored at each transverse 2D slice using the above numerical algorithm. Then the drive
beam, which exists in 3D space, should be pushed using these fields for a large time step Ds. The beam
momenta are known at half integer steps in s and the beam positions are known at full integer steps. When
the 2D loop finishes it returns the necessary fields to the 3D loop to update the beam at a full integer value of s.
This update uses the standard leap-frog algorithm and is therefore time centered with second order accuracy in
Ds. The step Ds only needs to resolve the betatron motion of the beam particles. The equations used are Eqs.
(6a)–(7b) with proper normalization. Then the charge density is deposited and the 2D cycle is started again for
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the updated beam driver. The 3D beam update and the charge deposition were taken directly from the UPIC
framework to be described shortly. The 3D loop does not require any field-solves so it typically uses a small
fraction of the total computation time.

If there is a laser driver, the above algorithm only needs to be modified in three places. In the momentum
advance, the ponderomotive force needs to be included in Eq. (19)
dupi?

dn
¼ qeff

me

cpiE? �
mec2

qpi

r?
jâj2

4
þ upi

c
� B

� �
?

" #
ð42Þ
so that the effective electric field in the non-relativistic Boris pusher is now cpiE? � mec2

qpi
r?jâj

2

4
.

In addition, the expression for cpi is now
cpi ¼
1þ u2

pi?=c2 þ jâj2=2þ ð1� qpiw=mec2Þ2

2ð1� qpiw=mec2Þ . ð43Þ
Values of the ponderomotive potential on the half integer grid values of x are calculated according to
½jâj2=2	mþ1=2 ¼ 1

2
f½jâj2=2	mþ1 þ ½jâj2=2	mg.
Last, we need to deposit the new quantity vp, the plasma susceptibility,
vp ¼ �
4p

mex2
0 � Volume

X
i

q2
pi

ð1� V pzi=cÞcpi
¼ � 4p

mex2
0 � Volume

X
i

q2
pi

1� qpiw=mec2
. ð44Þ
4. Implementation of laser pulse propagation equations

The propagation of the laser pulse is described by Eq. (16) for the evolution of the envelope â of the nor-
malized vector potential. This equation applies to the case of pulse propagation in a fully ionized plasma; that
is, it is assumed that there is no other matter in the form of neutral or partially ionized gas present that would
modify the dispersion relation for the laser light. To make the equations more general we imagine that there is
also a tenuous background medium present, characterized by a small correction to the dielectric constant,
de(x), that modifies the group velocity and adds dispersion. In this case Eq. (16) becomes
2
o

os
�ik0 þ

o

on

� �
â� ik0b1

o

on
âþ b2

o2

on2
â�r2

?â ¼ k2
0vTâ; ð45Þ
where b1 = 2(vf � vg)/c, vf is the frame velocity n = vft � z (now assumed to be different from the speed of
light) and
vg ffi c 1� 1

2

dðxdeÞ
dx

� �
x0
is the group velocity in the background medium in the limit in which the medium is tenuous. The coefficient of
dispersion is given by
b2 ¼
v2

f � v2
g

c2
þ x

d

dx
vg

c

� �����
x0

.

The quantity vT = vp + 2n2I represents the modified susceptibility including the plasma contribution and the
nonlinear susceptibility of the background medium. Here I is the local intensity and n2 the second order coef-
ficient of nonlinearity in the susceptibility of the background medium. The linear portions of the background
susceptibility are described by de and contribute to the coefficients b1 and b2. The coefficient b1 can be set to
zero by picking the frame velocity to equal the group velocity of the background medium. If no background
medium is present, then the frame velocity should equal the speed of light. The plasma reduction of the group
velocity is captured in Eq. (45) due to the interplay of the mixed, second order s–n derivative and the plasma
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contribution to the total susceptibility. Likewise, the reduction of the group velocity for waves propagating
obliquely to the z-axis is captured by the interplay of the mixed derivative and the transverse Laplacian.
Retention of the mixed derivative term also leads to separate conservation laws for wave energy and wave
action [12]. This allows for a correct treatment of pulse depletion due to the excitation of plasma waves.

We wish to find a stable numerical approach to solve Eq. (45) in a fully three-dimensional simulation.
In addition to the computational cost associated with solving a three-dimensional non-linear partial
differential equation, we have the added complication of performing this calculation on a parallel com-
puter system. To this end, we include the constraint that our computational algorithms have an efficient
parallel implementation. We note that the wave operator involves differentiation with respect to all three
space-like coordinates. This will make finding an s-centered fully implicit numerical implementation of
Eq. (45) difficult. Instead we will use a split step algorithm [23] in which Eq. (45) is separated into
two operators each of which can be advanced in an s-centered implicit way. Specifically, we separate
Eq. (45) into separate equations involving the two operators L0 and L1 so that each equation can be
solved with the same tri-diagonal matrix solver.
2
o

os
�ik0 þ

o

on

� �
â ¼ L0ðâÞ 
 i

k0b1

2

o

on
â� b2

2

o
2

on2
âþ k2

0vTðx?; n; sÞâ ð46Þ
and
2
o

os
�ik0 þ

o

on

� �
â ¼ L1ðâÞ 
 i

k0b1

2

o

on
â� b2

2

o2

on2
âþr2

?â. ð47Þ
Here we have assumed that the coefficients b1 and b2 are independent of transverse coordinate and we have
included half of their effect in each operator. If these coefficients were spatially varying we would include their
full effect in Eq. (46) and eliminate them from Eq. (47). The separation is made so that Eq. (46) can be solved
in n with x^ as a parameter, and Eq. (47) can also be solved in n by Fourier transforming in x^ and treating k^
as a parameter. It is necessary to include the mixed derivative on the left-hand side in both steps so that the
interplay between the mixed derivative and the susceptibility in the case of Eq. (46) and the mixed derivative
and the transverse Laplacian in the case of Eq. (47) that gives rise to the reduction of the group velocity due to
plasma and oblique propagation is recovered.

The sequence in which Eqs. (46) and (47) are solved is illustrated in Fig. 4. The top portion of this figure
illustrates the part of the code that solves for the laser field, while the bottom portion illustrates the part that
evolves the particles and calculates the plasma wake as described in the previous section. The communication
between the two parts of the code is illustrated by the arrows connecting the upper and lower portions of the
figure. The laser propagation part of the code must supply the normalized vector potential (actually, its mag-
nitude squared jâj2) evaluated on the s-grid, sn = nDs, to the particle part; while the particle part must supply
the susceptibility vT on the s-grid to the laser propagation part of the code. Given that the susceptibility vT is
known on the s-grid, Eq. (46) is centered about sn = nDs. The finite difference in s version of Eq. (46) is thus
written:
2 �ik0 þ
o

on

� �
~a

nþ1=2
1 � ~an�1=2

Ds
¼ 1

2
L0ð~anþ1=2

1 þ ~an�1=2Þ; ð48Þ
where ~an�1=2 and ~a
nþ1=2
1 are intermediate values of the normalized vector potential that are illustrated in Fig. 4.

The operater L0 contains the time and spatially dependent susceptibility evaluated at sn. This depends on the
vector potential at this same time, and this will have to be determined from ~an�1=2. We will discuss this point
subsequently. In between applications of operator L0 we must apply operator L1, which includes the trans-
verse derivatives. This will connect values of the intermediate quantities ~anþ1=2 and ~a

nþ1=2
1 as indicated in Fig. 4,
2 �ik0 þ
o

on

� �
~anþ1=2 � ~anþ1=2

1

Ds
¼ 1

2
L1ð~anþ1=2 þ ~a

nþ1=2
1 Þ. ð49Þ
In the operator L1 the coefficients are assumed to be independent of x^. Thus Eq. (49) is solved in Fourier
space, and periodic boundary conditions in the two transverse directions are applied.



Fig. 4. Schematic representation of second order accurate split step algorithm for advancing the laser field in s. Also shown is the
communication between the laser propagation part of the code and the particle and wake part of the code.
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Both operators L0 and L1 are second order with respect to differentiation by n. These operators are then
represented as second order finite difference equations. Both equations are thus equivalent to tridiagonal
matrices, which are solved by the dual sweep algorithm [24]. The issue of boundary conditions is complicated
by the addition of the dispersion coefficient b2. Dispersion allows that information can propagate both faster
and slower than the frame velocity. Thus, information can propagate to both large and small values of n.
Rather than attempt to impose an absorbing boundary condition at the minimum and maximum values of
n, we simply require that the vector potential vanish at these points and further require that the simulation
domain be large enough such that no reflection of waves from these points can occur. We note that in the case
in which dispersion is absent, then information can only propagate in the direction of increasing n. In this case
the required boundary condition is that all values of âðnÞ for n less then the minimum value in the simulation
domain must vanish.

The split step algorithm just described gives a second order in Ds accurate solution for the wave equation
provided a second order accurate value of the susceptibility is in the operator L0 in Eq. (48). The required
susceptibility is evaluated on the s-grid, while the intermediate quantities determined in Eqs. (48) and (49)
are known on the half grid. To evaluate the vector potential at the required time we apply a half time step
advancement of the operator L0 to generate ân on the grid nDs starting from the intermediate value ~an�1=2,
2 �ik0 þ
o

on

� �
ân � ~an�1=2

Ds=2
¼ 1

2
L0ðân þ ~an�1=2Þ. ð50Þ
Since ~an�1=2 is already second order accurate, and we are only advancing s by a fraction of a grid spacing we
can use a first order evaluation of the susceptibility in L0 for this step. Typically, we extrapolate the suscep-
tibility from the two previous s-steps for this estimate. Thus, to advance the laser field, only one call to the part
of the code that advances the particles is needed per s-step.

Eqs. (48) and (49) involve only finite differencing in the axial grid, thus each transverse location or wave-
number can be solved independently. This separation motivates the parallel implementation used to solve this
system. The normal layout of the field involves each node having all axial data and all the data for one trans-
verse coordinate. The second transverse coordinate is divided among the different processors. This layout
allows the evolution of Eqs. (48) and (49) to be local to a processor. Unfortunately this layout requires
two large communications to perform the transverse FFT necessary to evolve Eq. (49). We take an FFT in
the coordinate that is local to the processors then redistribute the data so the other transverse coordinate is
local. We can then perform the second FFT in this direction and then solve Eq. (49). Finally we reverse
the process leaving the data in the original layout.
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5. Construction of code and parallelization

The QuickPIC code is built from the UCLA parallel particle-in-cell (UPIC) framework [25] and a separate
laser solver module described in the previous section. This framework provides trusted components for the
rapid construction of new, parallel particle-in-cell (PIC) codes, using object-oriented ideas. It is designed in
layers. The lowest layer consists of highly optimized Fortran77 routines from 25 year legacy of PIC codes.
The upper layers are written in Fortran95. The middle layer primarily provides a much safer and simpler inter-
face to the complex Fortran77 legacy subroutines by encapsulating many details, such as data layouts on par-
allel machines. The upper layer consists of powerful high level classes that enable the reuse of large blocks of
code. The framework also provides several sample main codes.

The QuickPIC code is a fusion of a 3D and 2D parallel PIC code. The 3D code contains the beam particles
and treats the 2D code as a transverse field solver, where it passes the beam density as input, and obtains the
electric and magnetic fields as output. The framework uses the GCPIC algorithm for domain decomposition
[26], but with different decompositions. The 3D framework distributes the n coordinate across different pro-
cessors, while the 2D framework distributes the y coordinate and treats the n coordinate as time. Therefore,
the 3D code transposes the beam density which has dimensions (nx,ny,nz) from the form f(nx,ny,nz/nproc) to
the form f(nx,ny/nproc,nz), where nproc is the number of processors, before it calls the 2D code, and trans-
poses the potentials back to the original form after the 2D code returns.

The 2D framework distributes the y coordinate across processors, but the number of grids per processor
can vary. This allows one to keep the number of particles per processor approximately constant by adjusting
the sizes of the domains, and thus permits load balancing of the calculation. The framework is spectral and
uses FFTs to solve the fields. However, in addition to periodic boundary conditions, conducting boundary
conditions are also supported using various combinations of sine and cosine transforms.

The framework provides many of the functions that QuickPIC uses, such as solvers for the potentials, man-
agement of guard cells, FFTs, and a particle manager which ensures particles are in the correct domain. To
make such functions easy and safe to use, classes have been defined to hide the implementation details of com-
plicated data structures. To illustrate the importance of this, the conducting boundary potential solver doubles
the size of the grid in each dimension and creates image charges before the FFT is called. The data in Fourier
space are transposed and have a different domain decomposition than in real space. All these details are hid-
den from the user who uses this solver.

In addition to the components provided by the UPIC framework, some special functions had to be custom
written for QuickPIC, usually using a function provided in the framework as a starting point. For example,
both the particle push and charge deposit subroutines were modified. The new functions were placed in their
own modules, but also had available functions in the original modules, so that the relationship was similar to
that of inheritance in object-oriented languages. This kind of structure allows QuickPIC to make use of
upgrades to the UPIC framework with relatively little modification.

6. Comparison with full PIC(OSIRIS) simulations

In this section, we present the results of benchmarks of QuickPIC against a 3D fully electromagnetic code
OSIRIS. The greatest challenge is correctly computing the wakes for given driver shapes. Once the wake is
accurately computed then the accuracy of the advance of the beam particles or laser is not an issue. Therefore,
the benchmarks to be presented are on the calculation of the wake for electron, positron, and laser beams. In
each case, we assume the beam is azimuthally symmetric and it does not have any head to tail misalignment,
i.e., there is no tilt. We have benchmarked QuickPIC against OSIRIS for beams with asymmetric spot sizes
and tilts and the agreement is within the same accuracy as those for the symmetric cases. Also the parameters
of the benchmarks are chosen to be similar to those in the current or near future experiments; therefore these
benchmarks are of great practical relevance.

The first benchmark is done for an electron beam driver, for which we are mostly interested in the focusing
force on the beam and the longitudinal wakefield. The electron beam has a Gaussian profile in both transverse
and longitudinal directions, the spotsizes are rr = 7 lm and rz = 45 lm, respectively, the emittances
are ex = ey = 15 mm mrad. The total number of electrons in the beam is N = 1.8 · 1010. The beam is
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ultra-relativistic with c = 55,800. The plasma density is n0 = 2.0 · 1016 cm�3, the corresponding plasma skin
depth is c/xp = 37.5 lm. This is much larger than rr, so the beam is considered narrow and the benchmark
results should depend weakly on rr. The peak beam density is much higher than the background plasma den-
sity, nb/n0 = 25.9. For these parameters, some electrons reach maximum velocities near 0.96c and maximum
axial velocities near 0.83c and the maximum blowout radius is �1.5 c/xp. Thus the beam–plasma interaction is
in the highly non-linear blow-out regime and the assumptions of Whittum do not work [27]. The 3D OSIRIS
and QuickPIC simulations are carried out in moving windows with box size 16c/xp · 16c/xp · 13.35c/xp and
conducting boundaries in the transverse directions. The plasma provides strong screening of the driver’s fields.
So, although the electric and magnetic fields of the beam are huge in its vicinity, they do not penetrate into the
plasma beyond a few c/xp. The transverse box size is chosen to be large enough so that at the boundaries all
fields go to zero, thus the boundaries play little role here. Both simulations use 256 · 256 · 256 cells; the spatial
resolution is 0.0625c/xp for the transverse direction and 0.052c/xp for the longitudinal direction. For the OSI-
RIS simulation, the time step is chosen to be 0.025c/xp to satisfy the Courant condition. During the simulation
the beam has propagated 20c/xp into the plasma. The beam is stiff due to its large Lorentz factor; its shape
almost does not evolve in this short distance. So the quasi-static approximation should be well satisfied.

Shown in Fig. 5 are the longitudinal wakefields from QuickPIC and OSIRIS simulations. Results from
QuickPIC simulation with 2 and 4 iterations are both shown and they differ slightly from each other and from
the OSIRIS result only at the back of the wake field structure. The agreement is improved with more itera-
tions. However, the simulation with two iterations already gives very satisfactory results even in this highly
non-linear case. The discrepancy at the positive spike is caused by the fact that the charge and current depo-
sition schemes diverge for plasma particles with Vpz � c, therefore a smaller 2D step Dn is required to make the
deposition schemes more accurate.

To show that the additional approximations of Whittum are not valid for the highly non-linear interaction,
we carried out the same benchmark using basic QuickPIC in which the same algorithm used by Whittum is
implemented. The basic QuickPIC result shown in Fig. 5 is dramatically different in regards to the shape,
wavelength and amplitude.

Fig. 6 shows the radial electric fields and the azimuthal magnetic fields along the x direction at the center of
box (n = 0). Excellent agreement is observed for both comparisons. There is a plasma sheath at the blow-out
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Fig. 5. Longitudinal wakefields in QuickPIC and OSIRIS simulations for an electron drive beam. Both two iterations (l = 2) and four
iterations (l = 4) are used for the QuickPIC simulations. The driver moves from right to left in this plot. Also shown in dashed black curve
is the result from basic QuickPIC.
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channel boundary which carries high charge density and current density. The fields from the plasma sheath
almost cancel the fields from the beam. Therefore, both Ex and By are small outside the sheath.

For the second benchmark we use a positron beam driver. A positron beam attracts plasma electrons to the
axis and creates a density compression region near the axis. This process is non-linear in that electrons move
towards the axis with trajectories that cross. The resulting wake structure is small in scale, which requires fine
spatial resolution, thus increasing the problem size. The lack of strong shielding from a sheath layer also
makes a wide simulation box necessary. Therefore, the positron benchmark is a more stringent test for the
algorithm in QuickPIC.

In the positron benchmark, we once again use a beam containing N = 1.8 · 1010 positrons and set
c = 55,800. The beam spot sizes are rr = 25 lm and rz = 600 lm, respectively, and the emittances are
ex = ey = 15 mm mrad. The plasma density is n0 = 2.0 · 1014 cm�3, the peak density ratio is nb/n0 = 15.2.
The OSIRIS simulation uses a 4c/xp · 4c/xp · 16c/xp box with 512 · 512 · 256 cells. The QuickPIC simula-
tion uses a 8c/xp · 8c/xp · 16c/xp box with 1024 · 1024 · 256 cells. Here a larger box in the QuickPIC sim-
ulation is needed due to the fact that a particle reflecting boundary is used in QuickPIC. To show the fine wake
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Fig. 6. Radial electric and azimuthal magnetic fields comparisons for electron drive beam.

Fig. 7. The plasma electron charge density (qp/qion) in the x–z plane at the center of the beam is shown for (a) an OSIRIS simulation and
(b) a QuickPIC simulation. In both cases, the driver moves from top to bottom.
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structure, we plot the plasma density in both simulations in Fig. 7. The plots show a small region of the sim-
ulation domain to give a better view of the positron wake. The plots show a low density area near the axis and
wing-like structures formed around it. The QuickPIC simulation once again reproduces very faithfully most of
the detailed features in the OSIRIS results.

Figs. 8 and 9 are comparisons of the wake fields for the positron driver. Both simulations show fine scale
fluctuations in the longitudinal wakefield Ez and multiple spikes in Ex (for the center slice with n = 0). These
are the results of the fluctuations of local charge density near the beam core due to the strong phase-mixing as
the electrons are drawn to the axis by the positron beam. However, this process does not generate strong
plasma currents to cancel the beam current. Therefore, the azimuthal magnetic field is dominated by the beam
current. As seen in this benchmark, QuickPIC achieves very good agreement in the non-linear regime. Finally,
it should be noted that the positron wake fields are sensitive to the spatial resolution, simulation box size,
beam evolution after propagation into the plasma and other boundary effects. A careful simulation setup is
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Fig. 8. Comparison of the longitudinal wakefield for a positron driver.
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necessary for the benchmark. The subtle differences between the two simulations observed in Figs. 8 and 9,
such as a small plateau region of the first decelerating field, the amplitudes of the second decelerating field
and the peak radial electric field, are mostly due to these four factors.

The last benchmark is for a laser driver. The benchmark problem is adopted from the standard problem
proposed in Ref. [28] with some modifications to the laser parameters. The laser pulse has a longitudinal pro-
file of the polynomial form 10t 03 � 15t 04 + 6t 05, where
t0 ¼ ½1� Hðt � t0Þ	ðt0 � tÞ=trise þ Hðt � t0Þðt � t0Þ=tfall;
and H(t) is the Heaviside function. Here the laser has trise = tfall = 30 fs and the wavelength is 800 nm. The
profile is defined for the electric field, not the intensity. The laser propagates in a uniform plasma with match-
ing density n0 = 1.38 · 1019 cm�3. For this density, x0/xp = 11.24 and the non-relativistic plasma skin depth
equals the FWHM of the laser pulse longitudinal profile. The transverse profile is Gaussian and the focused
spot size is w0 = 13.66 lm FWHM at the plasma entrance. The condition for the validity of the ponderomo-
tive guiding center approach is jâj �

ffiffiffiffiffiffiffiffiffiffiffi
22:48
p

¼ 4:74. The normalized vector potential of the laser is jâj ¼ 2
which satisfies this condition. The laser–plasma interaction is in the non-linear blow-out regime.

The size of the simulation box is 320c/x0 · 320c/x0 · 321.8c/x0 or 28.47c/xp · 28.47c/xp · 28.63c/xp. The
number of the grids is 256 · 256 · 1024. For the 3D OSIRIS simulation, D t = 0.235/x0, which satisfies the
Courant condition. And the laser pulse has traveled 312.55c/x0 into the plasma so that the laser pulse has
no noticeable evolution yet for the comparison of the initial wake. The QuickPIC simulation has a shorter
box 320c/x0 · 320c/x0 · 157.2c/x0 to show the first wake bucket as the OSIRIS simulation shows trapped
particles in the second bucket. 256 · 256 · 256 grids are used in the QuickPIC simulation. For the relatively
small frequency ratio used the two simulations use a similar number of grids. However, if the frequency ratio
were increased by a factor r, the OSIRIS simulation would need r times as many cells in z while the QuickPIC
simulation would not. Fig. 10 shows the longitudinal wakefield benchmark for the OSIRIS and QuickPIC sim-
ulations. The curve from the QuickPIC simulation closely resembles the OSIRIS result, and it is smooth while
the OSIRIS curve is modulated by the laser oscillation. We have found that for larger jâj that QuickPIC does
not agree with OSIRIS. Understanding the limitations of the ponderomotive guiding center approach is an
area for future research.

It is interesting to consider how the required number of iterations depends on the beam parameters and
how the QuickPIC algorithm breaks down. Fig. 11 shows two additional longitudinal wakefield benchmarks
for identical beam parameters to the case in Fig. 5 except in one case we reduce the beam charge by a factor of
5 and in the other we increase it by a factor of 5. In Fig. 11(a) we show Ez for a weakly nonlinear case where
the maximum blow-out radius is �1c/xp and the maximum Vpz � 0.7c. Excellent agreement is obtained
between QuickPIC and OSIRIS for 2 (and even 1) iterations. It is seen that the basic QuickPIC result deviates
substantially from the full QuickPIC and OSIRIS results even when there are no trapped particles in this case.

In Fig. 11(b) we show Ez for a very extreme example. For these parameters the maximum blow-out radius is
�4c/xp and Vpz � 0.993c for some electrons. Nevertheless QuickPIC gives reasonable results for two itera-
tions and excellent agreement for four iterations except for the spike where particles begin to move forward
near the speed of light. Some of these particles can be trapped in the wake under certain circumstances. The
basic QuickPIC result for this case is useless. This example shows that the accuracy of the predictor–corrector
loop can be improved by using more iterations for a fixed Dn and the major failure of the code is caused by the
particles that can become trapped in the wake. When there are few trapped particles, the code does not become
grossly inaccurate no matter much charge is in the beam.

We close this section with an estimate of the CPU savings for the QuickPIC algorithm versus a full PIC
algorithm such as OSIRIS. We start with considerations for a beam driver. We assume both types of algo-
rithms use a ‘‘moving’’ 3D window of length Lz composed of Nx · Ny · Nz grids and the number of particles
per cell, Np, is the same. It is instructive to calculate the total number of particle pushes. Suppose one wants to
calculate the wake from an identical beam, in a full PIC code the beam starts outside the plasma and then must
propagate through the box in the z direction. This requires Nz timesteps times a factor of Kc = Dz/cDt due to
the Courant condition (Kc = 31/2 assuming cells are the same size in each direction). So the number of particle
pushes is Nx � N y � Nz � Np � N z �

ffiffiffi
3
p

(it is really a factor of �2 less since not all of the box is filled with
particles at the beginning). On the other hand, using QuickPIC we only need to go through the 2D part of
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Fig. 10. Longitudinal electric field comparison for a laser driver.

-1

-0.5

0

0.5

-6 -4 -2 0 2 4 6

Osiris
QuickPIC (l=1)
QuickPIC (l=2)
QuickPIC (l=4)
Basic QuickPIC

L
o

n
g

it
u

d
in

al
 W

ak
ef

ie
ld

 (
m

c
p
/e

)

p)

-10

-5

0

5

10

-4 0 4 8

Osiris 
QuickPIC (l=1)
QuickPIC (l=2)
QuickPIC (l=4)
Basic QuickPIC

L
o

n
g

it
u

d
in

al
 W

ak
ef

ie
ld

 (
m

c
p
/e

)

p
)

(a) (b)

ω

ωω

ω

Fig. 11. Longitudinal electric field comparisons for an electron beam driver with (a) N = 0.36 · 1010 and (b) N = 8 · 1010 electrons. Other
parameters of the beam and the plasma are the same as in the benchmark in Fig. 5. The accuracy of full QuickPIC is improved with more
iterations.
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the code once. The number of 2D particle pushes is Nx · Ny · Np · Nz where the Nz factor is the number of 2D
time steps. Therefore, assuming Np is the same there is a savings of Nz �

ffiffiffi
3
p

in particle pushes. For example, if
Nz = 256 this is a factor of �450.

There is additional savings that comes from taking large 3D steps in s after the initial wake is obtained. Sup-
pose one wants to propagate a beam through one betatron oscillation into the plasma, kb 
 2pk�1

b ¼ 2p
ffiffiffiffiffi
2c
p

c
xp

.
Using a full PIC code, a total of (kb/Lz)Nz · Kc updates are required to simulate one betatron wavelength. This
gives Nx · Ny · Nz · Np · kb · (Nz/Lz) · Kc particle pushes. The factor Nz/Lz is the cell size in z. On the other
hand, using QuickPIC requires only Nx · Ny · Np · Nz · Kb particle pushes where Kb is the number of steps
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needed to resolve one wavelength. We typically use Kb = 20–30. Therefore, when modeling the propagation of a
beam through a fixed distance (here one kb), there is a savings of (kb · Nz · Kc)/(Lz · Kb). For Nz � 256, Kc �

ffiffiffi
3
p

,
Lz � 2.5kp, Kb � 20 and cb � 105, kbNzKc=ðKbLzÞ �

ffiffiffiffiffiffiffi
2cb

p
N zKc=ðKbÞ � 1000. However, the number of particle

pushes is not the only issue. The QuickPIC loop is less efficient than a full PIC loop because each 2D update
has 2–4 iterations and the field solve involves numerous FFTs. We find from detailed timings that the actual
speedup is between 100 and 1000.

For a laser driver, the cell size in z is typically much smaller in a full PIC simulation, so the savings can be
considerably higher. When modeling a beam driver the cell size in z is �0.05c/xp, while when modeling a laser
driver the cell size must be ~0.25c/x0. Therefore, the savings is typically [x0/5xp]2 times larger when modeling
a laser driver. This factor is proportional to the ratio of the cell size squared because there are x0/5xp times
more particles and x0/5xp times more time steps.

The above discussion raises the possibility of running a full PIC code to calculate the wake and then using
the wake to advance beam particles a large distance forward in z and then repeating this loop. This subcycling
would be advantageous over a full PIC code when the distance of the beam advance is larger than the window
size. This would still be a factor of NzKc less efficient than a quasi-static code but it could be complimentary in
some cases [29].

7. Future development

In the immediate future, we will improve QuickPIC by adding ionization and load balancing. Other
directions for future code development are the use of k dependent diffusion coefficients in the iteration loop,
adaptive time steps in the 2D loop [14] and the use of pipelining. In QuickPIC, the 2D code views n as a
time variable so the calculation is sequential in n, and because the speed of the moving window is c, no
information is passed backward in n in the 3D code where n is treated as a spatial variable. This feature
allows QuickPIC to use software pipelining to achieve greater parallelism. Using this technique multiple
copies of the code can be started simultaneously, each works on different parts in n of the beam and passes
the results to the one working on the immediately following part. This is an analogy to the instruction-level
pipelining technique used in modern CPU design where speedup is achieved by adding more execution units
to the workflow.

If the number of copies used is N, the code speeds up by approximately N times over its current speed. For
typical QuickPIC runs, N can be as large as 64. And since the code currently scales to 32 processors, it would
be possible with software pipelining to run efficiently on as many as 2048 processors.

8. Summary

In this paper, we have described in detail the algorithm and structure of a new 3D parallelized quasi-static PIC
code called QuickPIC for efficiently modeling PWFA and LWFA problems. The main assumption in the Quick-
PIC model is that there are two distinct time scales for the driver and the plasma evolution. For PWFA, this
means that

ffiffiffiffiffiffiffi
2cb

p
� 1 and for LWFA this means x0/xp� 1. During the transit time of the driver, plasma par-

ticles’ longitudinal displacements are also assumed to be small compared to the bunch length. In addition, for the
ponderomotive guiding center description of LWFA to be accurate, jâj �

ffiffiffiffiffiffiffi
2x0

xp

q
. Under these approximations,

the calculation of the plasma response can be greatly simplified. For the parameters of the current E167 exper-
iment at SLAC and the ‘‘afterburner’’ concept, these approximations are well satisfied and QuickPIC is capable
of achieving at least a factor of 100 savings in CPU needs as compared to the fully explicit electromagnetic PIC
code OSIRIS. We have presented comparisons of QuickPIC with OSIRIS and the agreement is excellent.
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